

#### Niusha SAFARI

Ph.D. thesis (2023-2026) LGP2 (C. Chirat) TIMC (B. Toussaint; D. Hannani)

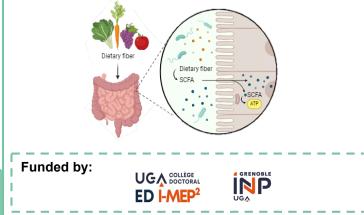
# Study the Nature of Wood Oligosaccharides for their Prebiotic effects

Étude de l'effet de la nature des oligosaccharides d'hémicelluloses de bois sur leurs propriétés prébiotiques



#### Context

The establishment of biorefineries is crucial for enabling integrated production of food, feed, chemicals, materials, fuels, and energy in the future.


#### Hemicelullose valorization

valorizing hemicellulose plays a crucial role in maximizing:

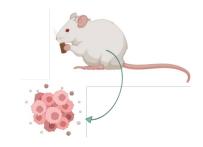
- resource utilization
- diversifying product streams
- reducing waste
- promoting sustainability in biomass processing industries.

#### Prebiotics

Due to their structural resemblance to common dietary fibers, wood-based oligosaccharides exhibit prebiotic characteristics, providing advantageous effects on the host's health by selectively influencing the composition of the gut microbiota<sup>1</sup>.



### **Objectives**


 Purification and characterization of the Oligosaccharide solution's fractions with the possibility of having an immunomodulatory effect



• Finding the most relevant microbial consortium and system to initially screen the fractions



• Study the promising fractions *in vivo*, to evaluate the immunomodulatory effect of the fractions



### Methods

## Oligosaccharides purification and

characetization

- Ultrafiltrartion
- HPLC
- FTIR
- MALDI ToF

### Prebiotic tests including in vivo and in vitro

- SCFA analysis
- Flow Cytometry
- Metagenomic study of caecal microbiota
- Analysis of Cytokines



Graphics created with BioRender.com

1.La Rosa, et al.(2019). Wood-derived dietary fibers promote beneficial human gut microbiota. MSphere, 4(1), 10-1128.

<u>Ä</u>