

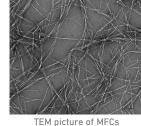
Emma COLOMBARI

Ph.D. thesis (2022-2025) LGP2 (J. Bras) CRAterre (T. Joffroy; A. Misse)

DESICELL : Design approach for new recyclable cellulosic based materials in building industry

Nouveaux procédés d'obtention de matériaux cellulosiques et terre crue recyclable pour architecture

Context / Objectives


Recyclable cellulosic and earth-based panel

Lowering the environmental impact of building industry

- 23% of the French carbon footprint¹
- 86,8 Mt of inert waste in France in 2020²
- 2/3 of down-cycled waste and 1/3 landfilled ³

Blend of earth, fibers and MFCs for finishing elements

- TEM picture of the FAC
- Low thermal conductivity ⁴
- Hygroscopic behavior: passive cooling ⁴
- Increase of mechanical properties ⁵

References:

- 1. Ministère de la transition écologique 2022
- 2. SDES. 2020 3. Bastin A. Flux - 2019

4. Giada G. et al., Hygrothermal Properties of Raw Earth Materials - 2019 5. Stanislas T.T. et al., Effect of cellulose pulp fibres on the physical,

mechanical, and thermal performance of extruded earth-based materials -2021

Glvco@Alps

Methods

Production process

1. MFCs production

The production of MFCs is perfored by refining, enzymatic hydrolysis and mechanical fibrillation.

2. Formulation

Mixture of cellulose fibers, micro-fibrillated cellulose and earth (FAC) in various proportion is made.

3. Mixing process

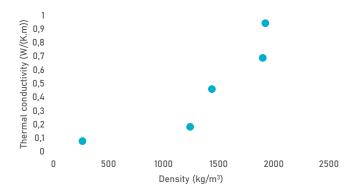
4. Compression process

Hydraulic press: 100 kN, 25°C

6. Recycling process

The final composite will be recycled following a protocol. The recovered mixture should be usable to produce a new material with the same level of properties. Scheme: BioRender

Results


Mechanical properties

Sample	Modulus of Elasticity (MPa)	Modulus of Rupture (MPa)	
FAC	711 ± 205	0.6 ± 0.5	
FAC + fibers	903 ± 227	0.6 ± 0.2	A
FAC + additive	2824 ± 893	1.3 ± 0.1	3 poi

int bending

The addition of fibers increases MOE but the MOR stays the same. Moreover, the addition of an additive increased significantly the MOE as well as the MOR.

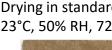
Thermal conductivity

The addition of fibers decreases the density and so the thermal conductivity.

MatBio

! b

Funded by:


5. Drying process Drying in standard room: 23°C, 50% RH, 72h

