

## **Clément TURPIN** PhD thesis (2023-2026) LGP2 (N. Reverdy-Bruas, J. Viguié)

3SR Lab (L. Orgéas)

# Architecturing papers and boards with bio-based grid printing: a low-cost approach to lightweight packaging

Papiers et cartons architecturés par impression de renforts bio sourcés : développement d'une approche à bas coût pour alléger les emballages.

## **Context & Objectives**

## Reducing the weight of paper-based packaging

- ➡ Paper production demands substantial ressources:
  - $\checkmark$  15-25 m<sup>3</sup>/ton of water,
  - ✓ 2.9 MWh/ton of energy,
  - ✓ 2-3 ton/ton of wood

## Idea: architecturing papers and cardboards

- ⇒ Embossing paper sheets to increase their bending stiffness
- ⇒ Low cost biodegradable route:
  - ✓ Printing patterns with starch suspensions
  - ✓ Sheet embossing induced during suspension drying

## **Thesis objectives**

- ➡ Optimization of the printing process
- ⇒ Multiscale analysis of :
  - ✓ Drying, shrinkage, buckling phenomena
  - ✓ Induced meso and microstructures
  - ✓ Induced hygro-mechanical properties



## Materials & Methods

### Materials & Processing route

- ⇒ Handmade model paper sheets: ✓ Softwood kraft bleached pulp
  - ✓ Rapid Köthen former
  - ✓ Basis weight: 80-120g/m<sup>2</sup>
- ➡ Aqueous suspension
- with 40 wt% of low molecular weight corn starch
- ➡ Screen printing

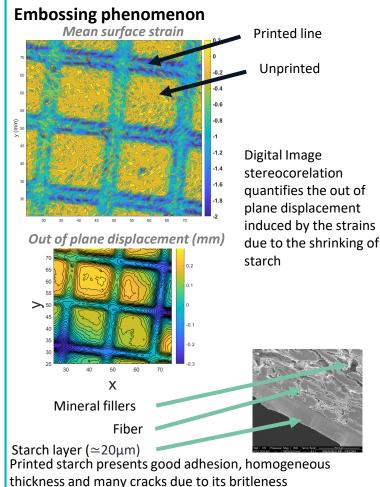
## Monitoring the drying/embossing



**Mechanical test:** 

Cantilever strip of paper

Measurement of meso kinematic fields during drying and shrinkage of the starch.




**Bending stiffness** measurement based on image analysis

#### Microstructure observations : ESEM



## **First Results**



Conferences: Turpin, C et. al. (2023). 8th EPNOE International Polysaccharide Conference, Graz

FunPrint

MatBio

ర్సం

Printed surface Unprinted

1.5 mm