Functional polymer composites based on natural polysaccharides: preparation and performance

Context

Natural polysaccharides
- Cellulose, starch, chitin, etc.
- Renewability, abundance, design flexibility
- Various forms of polysaccharides are used in the preparation of polymer composites: cellulose nanofibrils (CNF), regenerated cellulose, chitin nanocrystals, etc.

Trends in Polymer composites
- Sustainability and high performance
- Functionality and intelligence

Objectives

Construction of functional PVA composites based on CNF and chitosan (CS)
Based on the co-precipitation strategy
The non-solvent destroys polysaccharide solution/suspension system to build a complex.

Performance:
- High mechanical properties
- Good thermal performance
- Multi-stimuli responsiveness (Ionic strength, pH, and so on.)
- Repeatability and sensitivity
- Actuation performance

Methods

Process analysis of co-precipitation
Exploration of process parameters
For various polysaccharide systems, the influence of different parameters (such as precipitation time) on the structure and performance is studied.

Structure and performance of polymer composites
Characterization
- Morphological and structural analysis
 - SEM (EDS)
 - AFM
 - XRD
 - FTIR
- Performance Testing
 - Tensile test
 - DMA/TGA
 - Swelling in different solutions
 - Multiple stimulus responses

Publications:
Huang et al., Biomacromolecules, 2019, 20, 3969-3979.
Huang et al., Carbohyd. Polym., 2020, 245, 116445.
Saito et al., Biomacromolecules, 2007, 8, 2485-2491.
Responsive PNIPAM/PAAM-Alginate, Lu et al., Small, 2020, 16, 2005461.

In collaboration with South China University of Technology

Funded by

Conferences:
Tan et al., ACS Appl. Mater. Interfaces, 2018, 10, 40125-40131.
Wang et al., PNAS, 2020, 117, 14602-14608.