

Océane AVERTY Ph.D. thesis (2023-2026) LGP2 (C. Martin; J. Bras; Q. Charlier)

Cellulose substrate functionalization for barrier & sealing solutions in beauty packaging

Fonctionnalisation de substrat cellulosique pour des emballages barrières et scellables dans le domaine cosmétique

Thèse confidentielle

Context / Objectives

Single Use Plastic pollution

- SUPD in Europe, more and more regulations around the world
- Society expectations to have less plastic packaging

Replace flexible plastic packaging by barrier to water vapor paper packaging with bio-based coating

Reach the **barrier performance** required for high moisture products

Be sealable

Be recyclable and 100% biobased

Methods

1. Suspensions formulations

2. Monitoring coating and drying parameters

A multilayer strategy to reach all the targets

- 3. Characterisations of the material
- Barrier performance
- Recyclability

- Sealability
 - o Mechanical
 - o Ultrasound
 - \circ Heat

Results

The commercial coating color 1 is the only one which enables to reached the target (10 g/m².day). However, the lab made biobased emulsion is quit close to the target, which is promising.

Biobased coatings that don't behave like polymers are not heat selables.

MatBio