

Laura BERNARD Ph.D. thesis (2023-2026) LGP2 (A.Denneulin; N. Reverdy) CEA-Leti DTIS (P. Mailley; P. Marcoux)

Printed electronics for early detection of bloodstream infections

Electronique imprimée pour le dépistage rapide des infections sanguines

Context / Objectives

Bloodstream infections

- 48,9 million cases 2017
- 11 million deaths in 2017 (20% of worldwide deaths)
- Increase in antibiotic resistance, leading to the leading cause of death by 2050.

Handmade to a standardized product

Previous work have been made by manual deposit of ink. This PhD study various parameters to standardized the process of manufacture. Requirements:

- Autoclave-proof (130°C/18 min/2 bar)
- Rigid, resistant to breakage during septum perforation
- Biocompatible
- Electrically insulating
- Electrochemical sensor

Funded by:

In collaboration with LGP2

Methods

Electrochemistry-based

pH-sensitive ink: acidification of ph detected initially then hypothesis of ink reduction by bacteria measured by a potentiostat (OCP method)

Norking electrodes potential vs Ay/AgCl reference electrode during bacteria growth in Bact/Alert culture medium

Printing processes of sensor

Print on PCB sensor with 2 techniques:

- Screen-printing of viscous ink
- Manual deposit of liquid inks

Results

Electrochemical analysis by bacterial growth

 Results differ from those expected due to major changes compared to previous work

Electrical design and shape optimizations

3D printed prototypes to *test de penetration* of sensor through septum. Add, modify and test of: thickness, tip & inclination angles and chamfers

Shape optimization

Shape optimization and perforation test