

Lilou BOUTARIN PhD. thesis (2025-2028) LGP2 (A. Denneulin; J.Bras) LMGP (D.Bellet)

Eco-design of optically active multi-layered systems by full printed approach: materials-process correlations

Eco-conception de systèmes multicouches optiquement actifs par approche totalement imprimée : corrélations matériaux-procédés

FunPrint MatBio

Context

Electrochromic devices

Smart windows
Planes, cars, buildings

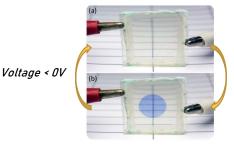
Flexible displays
Solar cells, captors

Other technologies
Fuel cells, printed battery

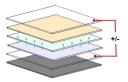
Printing technologies advantages

- Low production's cost
- Eco-friendly components
- Large deposition surfaces
- Flexible surfaces

Funded by / in collaboration with:



Objectives


Create a device which can change their color when a electrical voltage is applied (reversible action)

Voltage > 0V

- Good optical properties
- Durability after several cycles of use

 Electrical and thermal stability
- Low switching time between the two state
 - Study the interface phenomena

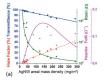
Methods

Nano particles characterization

- Cellulose
- Silver nanowires
- Electrolyte
- Metallic oxide particles

Fluid engineering

- Electrochromic ink
- Electrolyte ink
- Transparent conductive ink


Printing processability

- Rheological properties
- Characterization of unique layers

Materials physics

- Experimental and modelling approaches
- Stability assessment under stress

