

Emma COLOMBARI

Ph.D. thesis (2022-2025) LGP2 (J. Bras) CRAterre (T. Joffroy, A. Misse)

DESICELL: Design approach for new recyclable cellulosic based materials in building industry

Nouveaux procédés d'obtention de matériaux cellulosiques et terre crue recyclable en architecture

MatBio

Context / Objectives

Building sector is very polluting

- 23% of the French carbon footprint¹
- 60% CO₂ emission of building: finishing elements²

References:

1. Ministère de la transition écologique – **2022** 2. OID - Penser l'immobilier responsable - **2019**

Reversible earth-fibers based panels

- Raw earth coming from quarry waste: washing sludge, rich in silts and clay: slightly cohesive.
- Cellulose fibres coming from virgin or recycled fibres: eucalyptus or old newspapers.
- Producing cohesive, hygroscopic and flame retardant materials for finishing elements.

MEB: Raw earth

Microscope: eucalyptus fibres

Funded by:

In collaboration with:

Glyco@A

Methods

- Formulation with various fibres content and water (+ bio-based additive).
- Mixing process is done using a twin-screw extruder with one shearing zone.
- Samples are produced using compression or extrusion. Leading to very different final materials.
- Compressed and extruded samples are then dried at room temperature for 5 days.

Compressed sample

Extruded sample

Results

The addition of bio-based additive improves significantly the mechanical properties.

Addition of fibres increases the water vapour uptake. This can have a potential application for indoor humidity regulation.