

Mathilde DAVID Ph.D. thesis (2022-2026) LGP2 (Q. Charlier, J. Bras)

Manufacturing of bio-based materials using ultra-sonic compression molding

Élaboration de matériaux biosourcés par compression ultrasonore

MatBio

Context / Objectives

Manufacturing of 100% biosourced materials

Environmental footprint reduction

Bio-sourced materials can have a significant environmental impact:

- Use of petroleum-based resins (wood panels)
- High energy consumption during production (papers and boards)
- Low recyclability (bio-based composites)

New process and material development

- 1. Use of Bio-waste as raw material in order to get into a *circular economy model*
- 2. Dry process in order to *reduce water and energy* consumption
- 3. Manufacturing of molded composites via powder compression using ultrasonic vibrations
- → 100% Composite materials made derived from cellulosic fibers and natural binder (lignin and others)

Funded by:

Methods

Ultrasonic compression

High frequency acoustic vibration under compression

Compaction of dry powder into bulk Composites materials

Figure : Ultrasonic Press Sonimat

Characterization methods

Analvsis:

- Microstructural
- Resistance to water and humidity
- Mechanical properties
- Energy consumption

Impact assessment

• Multicriteria analysis to associate material properties and energy footprint

• Toward scale up (TRL 4+)

Results

Key process parameters:

- Power and transmitted energy

Process development:

- Molds (for dry materials)
- Spring tooling system for US molding
- Temperature monitoring

In-situ monitoring of material formation

Key raw material characteristics:

- Influence of chemical composition
- Shape and Size of bio-elements
- Influence of humidity content

David M. Et al. (2023), Journée Nationale sur les Composites (JNC). Besançon