

Sarp KÖLGESIZ Ph.D. thesis (2025-2028) LGP2 (N.Belgacem; D.Beneventi) PoliTO (R.Bongiovanni)

Design of an innovative wood-based biocomposite and development of its processing by 3D LDM printing and thermopressing

Elaboration d'un biocomposite innovant à base de bois et développement de sa mise en forme par procédés d'impression 3D et thermopressage

MatBio FunPrint

Context

Biomass processing industries

Industrial lignins

The global lignin market~over €3 billion

90% of extracted lignin use as a biofuel

So what might be other **alternative application areas** for industrial lignin?

1) Developing fully bio-based resins as a competitive and sustainable alternative to conventional petroleum-based adhesives.

Funded by: MSCA Unite!Energy

Objectives

There are different approaches alternative to current petroleum-based materials, creating different application areas for utilization of industrial lignins.

→ To create fully bio-based resins which will be formulated with phenolic groups obtained from depolymerized lignin and a bio-based alternative to formaldehyde

Thermoplastic copolymers

Thermoset liquid resins

Applications:

Methods

Materials: PFA, lignin, cellulose nanoparticle → Preparing composite materials

Processing

3D printing (Liquid deposition modelling)

Spary Coating or Casting

Analysis & Characterization

Chemical properties:

FT-IR, NMR, DSC

Physical properties

Viscometer (viscoelastic property), UTM and 3-point bending test machine (mechanical properties)

Morphological property

SEM, VLM, X-ray tomography